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Models of different complex media based on the introduction of a central friction mech- 

anism, are considered. Such plasticity mechanisms allow proposing a foundation for defor- 

mation plasticity theories different from those known n-41. Also considered is a model 
of plasticity theory which generalizes the theory of ideal plasticity by describing effects 

characteristic of the theory of anisotropic hardening without the introduction of “elastic 

microstresses”. 

1. In examining the properties of varius continua manifested during quasistatic load- 
ing, it is useful to utilize mechanical analogs in a number of cases which permit graph- 
ical illustration of some properties of media.When modelling the properties of an elastic 

T k- a 
medium,ordinarily an elastic spring (Fig. la) is considered, while a 
piston in aviscous fluid [a dashpot] (Fig.lb) and a body on a frictive 
surface(Fig.lc) are considered for the viscous and plastic properties, 
respectively. The inertial properties of the models are not examined. 

The models mentioned can be represented somewhat differently, 

more conveniently for the subsequent generalizations. 
Let us imagine that an elastic element is connected by a flexible 

inextensible filament spanning an ideal block, to an element loca- 

ted on a horizontal plane without friction to which a stress result- 

ant T is applied (Fig2a). Evidently this mechanical model does 

not differ. in its properties, from the model pictured 
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I .T. in Fig. la. Mechanical viscosity and friction models 
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can be introduced analogously (Figs. 2b, c). Evident- 

ly, the intrinsic weight of the elements, besides the 

inertial properties, should not be considered in the 
models pictured in Fig. 2, such as for example, the 

weight of the piston of the viscous element, or the 

T 
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Fig. 2 Fig. 3 

weight of the friction element in Figs. 2b. c. 
A scheme with vertically disposed mechanisms can be utilized for the introduction 

of a model whose element is a load of weight P (Fig. 3). In this case the force-displace- 
ment diagram under loading evidently has a form analogous to the model with friction 

523 



524 1. h Berezhnoi, D. D. Ivlev and E. V. Makarov 

(Fig. Zc), but the loading and unloading processes are reversible and, in substance, pheno- 
mena characteristic for nonlineariy elastic bodies occur, Let us note that utilization of 

a gravity element does not introduce any principles for the determination of elastic body 
models: springs with nonlinear characteristics and a variable gravity field (an equivalent 
state is achieved by changing the mass of the load,forexample) result in models with 

identical mechanical properties. 
A scheme with vertically disposed mechanisms permits the introduction of two-dimen- 

sional models of plastic, elastoplastic, and other complex media different from those 
considered earlier, and whose properties can underlie the foundation of deformation theo- 

ries of these media. 
Let us present a two-dimensional model of an elastic body. A stress resultant T with 

components T,, T2 is applied to a 

st? Tz 
T flexible inextensible filament at .a 

point n on a horizontal plane. Let 
A 5 

~ 

be , with the components Aelr 1s~ , 

0 
c denote the increment in the displace- 

8 b 
ment at the point A . 

Let e = j/erW?z” be called the 
intensi~ of displacement. The fila- 

Fig. 4 ment nB passes through a hole at 

the origin and connects with the 
vertically disposed elastic spring at the point B (Fig. 4a). The same model is shown in 
Fig. 4b schem&fcaIly. Analogous schemes of two-dimensional models for a viscous, 
plastic, efastoplastic, plastic hardening and viscoplastic body are presented in Figs. 5a-e, 

respectively. 

Cf 
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Fig. 5 

In all the two-dimensionat models shown in Figs.4 and 5, the element in the horizon- 

tal plane is ideally smooth, there are no viscous friction forces between them and the 
horizontal plane. 

Let us form the fundamental equations governing the behavior of the mechanical 
models pictured in Figs. 4 and 5. 

For the elastic model (Fig.4) we will have 

where c is the stiffness coefficient of the spring, 
For all the subsequent models (Fig. 5). proportionality between the displacements and 
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stress resultants 4 es -=, 
Tl Ta 

will also hold, independently of the nature of the mechanisms. 

For the viscous body model (Fig. 5a) 

m=pm, eia 2 

holds, where p is the viscosity factor. 

For the model of a plastic body (Fig. 5b) 

T,Z + T?Z L- ,V, (k=conet) 

holds, where k is the limit value of the dry friction force. 

For the model of an elastoplastic body (Fig. 5c) 

0.2) 

(i-3) 

(1.4) 

holds. 
T12 + T2 < k?, VT2 + T$ = c fw 

For the model of a plastic hardening body (Fig. 5d) 

)/T12+T11=k+ cvm 

(1.5) 

(1.6) 
holds. 

Finally, for the model of a viscoplastic body there holds 

1/TP+Ta’=k+p vm (1.7) 

Two-dimensional models for different complex media can be considered analogously. 

2. Let us examine the plastic body model (Fig. 5b) in more detail. As has already 
been established, the fundamental relationships are (1.2), (1.4). In the general case the 

displacements er, es are not residual. The magnitude of the intensity of displacement 
e = (eX2 + ez2)“* is a measure of the residual strain. 

Displacement of an element under a constant intensity of displacement (neutral load- 

ing) along a circle AA’ (Fig. 6) will occur without the stress resultant performing work 
on the displacements (this circumstance is characteristic for 

-\ 
all the two-dimensional models introduced). 

A’ . /A: 
The neutral loading process is completely reversible. 

C ,)\G 
Let us examine the loading resulting in displacements 

\ 

/G 

from the point A to the point Ar(Fig.6). 

A\ \ 
The displacements AA, are composed of the vector sum 

of the displacements ACr(Ae”r, Ae?) normal, and AC(Ae*,, 
I.7 Ae’z) tangent to the circle AA’ . 

Displacements of the friction (plasticity) element evidently 
cause just increments in the normal displacements, and in 
this sense the plastic deformation law 

Fig. 6 Aer* be%” -=-( 
Tl T2 

TI* + T.2 = k2 (2.1) 

is valid, where Aenl, A& are the normal increments in the displacements causing the 
displacement of the plasticity element. 

It should however be kept in mind that increments in the normal displacements cau- 
sing a residual displacement of the friction element of the magnitude [ ( Ae”l)3+(Ae~n)z]“S 

will not themselves be residual: they can be reversibly altered by a neutral loading. 
Unloading can be defined, as follows. It can be assumed that the flexible filament in 
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the model is capable of transmitting the stress resultant in the opposite direction. Then 
the model under consideration will behave as a rigidly plastic body. Unloading holds when 

stress resultants assure an increment in the intensity of displacement Ae of opposite sign, 
whereupon the relationship (1.2). (1.4) are satisfied. 

Let us assume that the element has received a displacement of intensity e, and then 

the loadings are removed. An element in a horizontal plane without stress resultants can 

occupy any position under a constant intensity c (any position on the circle AA’, Fig. 6), 
To some extent the behavior of an ideal fluid, an isolated element of which can change 

shape arbitrarily, is the analog of such behavior. 

# 
In passing, let us note that a body on a smooth 

5? horizontal plane can be a two-dimensional mo- 
del illustrating the properties of an ideal fluid. 

Strain without a change in the potential load- 

ing under a constant stress intensity also exists 
for an incompressible elastic body. 

3, Let us examine the relationships of the 
deformation theory of ideal plasticity. Upon 

utilization of dynamic analogies, stress deviators 
are set in correspondence with the stress result- 
ants, and strain deviators with the displacements. 
The dependence between the first invariants of 
the stress and strain tensors is formulated inde- 

pendently. 

Let us set the plasticity condition 
Gij’Gij’ = k’, k=conat (3.1) 

Fig. 7 in correspondence with condition (1.4). 

Here and henceforth, the prime denotes the deviator components. 

The relationships 
eij’= hS*j' 

(3.2) 

correspond to condition (1.2). 
The quantity X is defined according to (1.3). (1.4). from which k = (i / k) (e’(jeij)“*. 

The quanti~ e,’ = (ejt’ esj)“’ is considered a measure of the plastic deformation. 

The plastic deformation is invariant if eu’ is constant, de,’ = 0. 

The relationship of the deformation theory of a hardening plastic body agrees com- 
pletely with the relationships of the theory of small elastoplastic deformations 

%’ 
eij’ x  _ 6.. 

%’ 
11 0 

au’ = Q, (e,‘), 5,’ = (bij’5ij’)“’ (3.3) 

Under this interpretation the plastic deformation is connected with the quantity de:,. 

There is no plastic deformation for de; = 0. 
kt us note that the relationships of the deformation theory of a viscoplastic body and 

similar models connected with the models introduced can be written down completely 

analogously. 

4, Let us discuss one model of a plastic body. Let us consider the following two- 
dimensional model (Fig. 7). A dry friction element A is placed on a horizontal plane, 
and is in turn connected by a tension AB to a dry friction element E. Under the effect 
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of the external stress resultants T,, Ta the element is displaced in the direction of the 
line aa’. 

The reaction of the dry friction element A has the components r,, rz, and their result- 

ant is directed opposite to the motion of the element, i.e. along the line (101. The stress 

resultants transmitted by the dry friction element are denoted by s,, 9. In the ultimate 

state we evidently have 

T~=h+ri, Ts=rs-l-rr, ~12 + s,2 = kJ2, n2+ rrt=kr2 

a ea de1 de2 a=-;,=_ 
b 8a n rs 

(k:, k, = const) 

From (3.4) we obtain 

TI’ + Tr2 = k? + V + 2 (an + sn) 
Let us note that 

(3.4) 

(3% 

(I- 1, 1) (3.6) 

Then the relationship (3.5) is easily converted to 

TP + Tz2 = h2 + ka2 + 2hkl 
eldeJ + eJdeg 

__ 
If/c? + es’ vde? + ds’ 

From (3.4) and (3.6) we also obtain 

de1 de2 
TI - hex / feJa + e;J = T, - kses / vm 

(3.7) 

(3.3) 

Let dD = T,de, + Tzdez. From (3.4) we obtain 

dD = 4d ( f-j + ka f(de# + (de# (3.9) 

It follows from (3.7), (3.8) that the maximal external stress resultant occurs when the 

directions ei, de‘ coincide , in this case 

T12 + Tza = (k5 + kz2) (3.10) 

In all the other cases the external stress resultant is less than (3.10). It follows from 

(3.9) that, with the exception of the case of coincidence in the directions of eI and de,, 

the directions dcl.and T, do not coincide, i. e. phenomena occur of the type of acquired 

anisotropy described by the theory of translational hardening, for example. However, in 
this case there are no “elastic microstresses”; all the mechanisms underlying the con- 

struction of the model are irreversible. 
Let us write down analogous relationships of plasticity theory. The expressions 

‘ii ‘Es ,; + rij)* *ij”ij 
’ = kJ”, f hii’) = kt”. t, bcmst (3.U) 

‘tj 
‘zJ.28 ’ 

af 

ij ’ deij’ = dp ar 

correspond to conditions (3.4). 
4j 

In the simplest case 

f (r&/) = rij’rij ‘--kaa - 
Then 

‘tj”tj 
’ -< k12 + k,2 + 

2khJei j’de,j’ 
, ‘In (eij’er j’)“r (de,i’de,j 1 

deij 
kleij’ 

( ei j’ei j’)“r 1 (3.i2) 
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The maximal quantity in the proposed theory is cr Ic = k, + k2, and is generally depen- 
dent on the cosine of the angle between the vectors egj‘ and de*!‘. The relationships of 
classical ideal plasticity theory occur from (3.11) in the particular case with kl = 0, 

kz # 0 , and of deformation ideal plasticity theory for k1 # 0, ka = 0. 
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A method is indicated for constructing the equations of motion of free systems of mate- 

rial points connected to each other by inertialess elastic constraints. The system config- 

uration is arbitrary. and any arbitrarily time-dependent external forces are applied to 
the material points. 

1. Rigid ryatem. Let us assume that there are N material points in the system. 
Let mt denote the mass of the i th point, M the sum of all the masses so that 

M = C”f$ (1.1) 

Here, as everywhere below, the symbol Z denotes summation over all material points 
of the system, i. e. over i between 1 and N. 

We call a system for which the deformations of the elastic constraints are zero - a 

rigid system. If the constraints are absolutely rigid, the rigid system is substantially an 

absolutely rigid body. 
Let us refer the rigid system to fixed Cartesian coordinates with the unit vectors e,O 

(i = i ,2,3), and also to moving coordinates with ej (i = 1,2,3) directed along the prin- 
cipal central axes of inertia of the rigid system. If Pi09 pco are radius-vectors of the rtil 

point and the center of mass of the rigid system relative to the origin of the fixed coor- 

dinates, and pi = zilel + xi%2 + zi3ea (1.2) 

is the radius-vector of the i th point of a rigid system relative to its center of mass, then 

Pi’ = Pc” + Pi 

By the definition of the center of mass 

fi ‘3) 


